The accurate computational prediction of T-cell epitopes can greatly reduce the experimental overhead implicit in candidate epitope identification within genomic sequences. In this article we present MHCPred 2.0, an enhanced version of our online, quantitative T-cell epitope prediction server. The previous version of MHCPred included mostly alleles from the human leukocyte antigen A (HLA-A) locus. In MHCPred 2.0, mouse models are added and computational constraints removed. Currently the server includes 11 human HLA class I, three human HLA class II, and three mouse class I models. Additionally, a binding model for the human transporter associated with antigen processing (TAP) is incorporated into the new MHCPred. A tool for the design of heteroclitic peptides is also included within the server. To refine the veracity of binding affinities prediction, a confidence percentage is also now calculated for each peptide predicted.
Availability: As previously, MHCPred 2.0 is freely available at the URL http://www.jenner.ac.uk/MHCPred/
Contact: Darren R. Flower ([email protected]).