Aims: We sought to define the mechanisms and correlates of leptin's vascular actions in humans with coronary artery disease.
Methods and results: In 131 patients (age 65.7+/-0.7 years mean+/-SEM), ex vivo vascular reactivity to leptin (10(-13)-10(-7) M) was assessed in saphenous vein (SV) rings. Leptin led to SV relaxation (maximal relaxation 24.5+/-1.6%). In separate experiments, relaxation to leptin was unaffected by L-NMMA (17.4+/-3.4 vs.17.8+/-3.3%, P = 0.9) or endothelial denudation (17.4+/-4.4 vs. 22.5+/-3.0%, P = 0.4). We explored the possibility that leptin's vascular effects are mediated via smooth muscle hyperpolarization. In the presence of KCl (30 mmol/L) to inhibit hyperpolarization, the vasodilator effect of leptin was completely blocked (0.08+/-4.1%, P < 0.001 vs. control). Similar results were demonstrated in internal mammary artery rings. The only independent correlate of leptin-mediated vasodilatation was plasma TNF-alpha (r = 0.25, P < 0.05). Neither body mass index nor waist circumference correlated with leptin-mediated vasorelaxation. This lack of a correlation with markers of total body fat/fat distribution suggests that leptin resistance may not extend to the vasculature.
Conclusion: Leptin is a vasoactive peptide in human SV and internal mammary artery. Its action is not nitric oxide or endothelial-dependent. Markers of body fat did not correlate with leptin-mediated vasodilatation, raising the intriguing possibility of selective resistance to leptin's actions.