Despite their apparent commitment to the B lymphocytic lineage, human precursor B cell acute lymphoblastic leukaemias (ALL) frequently rearrange their T cell antigen receptor (TCR) alpha, beta and gamma chain genes. Since these three genes are active sites of rearrangement in precursor B cell neoplasms, it seemed that the recently discovered fourth TCR gene, delta, might be similarly rearranged. To investigate this possibility, a series of precursor B cell leukaemias was analysed for rearrangements at the delta chain gene locus, using probes of the variable, joining, and constant regions of the delta chain gene. The majority of precursor B cell ALLs in this series (25/32, 78%) showed rearrangement or deletion of one or more TCR delta genes. This contrasts sharply with a series of 16 mature B cell neoplasms (chronic lymphocytic leukaemia) in which no TCR delta gene rearrangements were detected. An unusual TCR delta rearrangement, rarely observed in normal or neoplastic T cells, was seen in the majority (14/18) of precursor B cell ALLs with TCR delta rearrangements. In contrast to the utilization ov V delta 1 in T cell ALL, detailed restriction mapping of precursor B ALL revealed an incomplete rearrangement without involvement of J delta segments. Direct genomic sequencing was performed on one example and demonstrated a nonproductive V delta 2-D delta 2-D delta 3 recombination in this precursor B ALL. We conclude that the TCR delta chain gene is an active locus in precursor B cell neoplasia, involves an unusual type of rearrangement and provides a clonal tumour marker for diagnosis of precursor B ALL.