Progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta is the main histopathological characteristic of Parkinson's disease. We studied the electrophysiological characteristics of the spontaneous activity of substantia nigra pars compacta dopaminergic neurons in rats with a partial, unilateral, 6-hydroxydopamine lesion of the nigrostriatal pathway. In addition, the effects of subthalamotomy and prolonged levodopa treatment on the activity of dopaminergic neurons were investigated. As a result of the lesion ( approximately 50% neuronal loss), the number of spontaneously active neurons was significantly reduced. Basal firing rate, burst firing and responsiveness to intravenously administered apomorphine remained unchanged. In contrast, the variation coefficient, a measure of interspike interval regularity, was significantly increased. Ibotenic acid (10 microg) lesion of the ipsilateral subthalamic nucleus in lesioned rats did not modify the electrophysiological parameters. However, prolonged levodopa treatment (100 mg/kg/day + benserazide 25 mg/kg/day, 14 days) reversed the irregularity observed in cells from lesioned rats, while it induced an irregular firing pattern in cells from intact rats. Our results using an experimental model of moderate Parkinson's disease indicate that surviving substantia nigra pars compacta dopaminergic neurons fire irregularly. In this model, subthalamotomy does not modify the firing pattern while levodopa treatment efficiently restores normal firing of SNpc neurons and does not appear to be toxic to them.