Background: RTS,S/AS02A, a recombinant Plasmodium falciparum vaccine based on the circumsporozoite protein (CSP) repeat and C-terminus regions, elicits strong humoral and Th1 cell-mediated immunity. In field studies, RTS,S/AS02A reduced malaria infection, clinical episodes, and disease severity. Heterologous prime-boost immunization regimens, optimally spaced, might improve the protective immunity of RTS,S/AS02A.
Methods: DNA plasmid encoding P. falciparum CSP (3D7) was administered to six experimental groups of rhesus monkeys (N = 5) by gene gun (coded as D), followed by a 1/5th human dose of RTS,S/AS02A (coded as R). Immunization regimens, including a numeral to denote weeks between immunizations, were D-4-R, D-16-R, D-4-D-4-R, D-4-D-16-R, D-16-D-4-R and D-16-D-16-R. A control group (N = 5) received a single 1/5th dose of RTS,S/AS02A. Endpoints were antibody (Ab) to homologous CSP repeat and C-terminus regions and delayed-type hypersensitivity (DTH) to CSP peptides.
Findings: Monkeys immunized twice with DNA, 16 weeks apart (D-16-D-4-R and D-16-D-16-R), developed higher levels of anti-C-terminus Abs than control monkeys (p<0.02). No CSP DNA priming regimen increased RTS,S/AS02A-induced Ab to CSP repeats. At 16 months after first immunization, D-R and D-D-R, but not control, monkeys had histologically confirmed DTH reactions against CSP C-terminus, which persisted at repeat testing 12 months later.
Interpretation: Two optimally spaced, particle-mediated epidermal deliveries of CSP DNA improved the humoral immunogenicity of a single dose of RTS,S/AS02A. Further, CSP DNA prime followed by one dose of RTS,S/AS02A gave biopsy proven DTH reactions against CSP C-terminus of up to 2 years duration, implying the induction of CD4+ memory T cells. Heterologous prime-boost strategies for malaria involving gene gun delivered DNA or more potent vectors, administered at optimal intervals, warrant further investigation.