Background: Central nervous system (CNS) tuberculosis is a serious, often fatal disease that disproportionately affects young children. It is thought to develop when Mycobacterium tuberculosis breaches the blood-brain barrier (BBB), which is composed of tightly apposed brain microvascular endothelial cells. However, the mechanism(s) involved in this process are poorly understood.
Methods: To better understand these processes, we developed an in vitro model of M. tuberculosis BBB infection using primary human brain microvascular endothelial cells.
Results: M. tuberculosis was found to both invade and traverse the model BBB significantly more than did M. smegmatis (a nonpathogenic mycobacterium). Invasion by M. tuberculosis across the BBB required host-cell actin cytoskeletal rearrangements. By microarray expression profiling, we found 33 M. tuberculosis genes to be highly up-regulated during the early stages of invasion of the BBB by M. tuberculosis; 18 of them belong to a previously described in vivo-expressed genomic island (Rv0960-Rv1001). Defined M. tuberculosis isogenic transposon mutants for the up-regulated genes Rv0980c, Rv0987, Rv0989c, and Rv1801 were found to be deficient in their ability to invade the BBB model.
Conclusions: We developed an in vitro model of M. tuberculosis BBB infection and identified M. tuberculosis genes that may be involved in CNS invasion.