Prostaglandin (PGE) 2 is the most common prostanoid and plays an important role in female reproduction. The aim of this study was to examine the expression and regulation of microsomal (m) PGE synthase (PGES)-1 and cytosolic (c) PGES in the mouse ovary during sexual maturation, gonadotropin treatment and luteal development by in situ hybridization and immunohistochemistry. Both mPGES-1 mRNA signals and immunostaining were localized in the granulosa cells, but not in the thecal cells and oocytes. cPGES mRNA signals were localized in both granulosa cells and oocytes, whereas cPGES immunostaining was exclusively localized in the oocytes. In our superovulated model of immature mice, there was a basal level of mPGES-1 mRNA signals in the granulosa cells at 48 h after equine chorionic gonadotropin (eCG) treatment. mPGES-1 mRNA level was induced by human chorionic gonadotropin (hCG) treatment for 0.5 h, whereas mPGES-1 immunostaining was slightly induced at 0.5 h after hCG treatment and reached a maximal level at 3 h after hCG treatment. eCG treatment had no obvious effects on either cPGES mRNA signals or immunostaining. A strong level of cPGES immunostaining was present in both unstimulated and eCG-treated groups. Both mPGES-1 mRNA signals and immunostaining were highly detected in the corpus luteum 2 days post-hCG injection and declined from days 3 to 7 post-hCG injection. cPGES immunostaining was at a basal level or not detectable from days 1 to 7 after hCG injection and was highly expressed in the corpus luteum from days 9 to 15 post-hCG injection. PGE2 biosynthesized through the mPGES-1 pathway may be important for follicular development, ovulation and luteal formation.