In vitro studies of bacteriophage Mu transposition have shown that the phage-encoded transposase and repressor bind the same sequences on the phage genome. We attempted to test that prediction in vivo and found that Mu repressor directly inhibits transposition. We also found that, in the absence of repressor, constitutive expression of Mu transposition functions pA and pB is lethal in Escherichia coli strains lysogenic for a mini-Mu and that this is the result of intensive replication of the mini-Mu. These findings have important consequences where such mini-Mus are used as genetic tools. We also tested whether in Erwinia chrysanthemi the effect of transposition functions on a resident mini-Mu was the same as in E. coli. We observed that expression of pA alone was lethal in E. chrysanthemi and that a large fraction of the survivors underwent precise excision of the mini-Mu.