In submerged monolayer culture, Dictyostelium cells can differentiate into prespore and prestalk cells at high cell densities in response to cAMP but not at low cell densities. However, cells at low densities will differentiate in medium taken from developing cells starved at a high density. The putative factor in the medium was designated CMF for conditioned medium factor (Mehdy and Firtel, Molec. cell. Biology 5, 705-713, 1985). In this report, we size-fractionate conditioned medium and show that the activity that allows low density cells to differentiate can be separated into high and low Mr (relative molecular mass) fractions. Interestingly, the two fractions both have the same activity and do not need to be combined to allow differentiation. The large conditioned medium factor is a protein, as determined by trypsin sensitivity, that can be purified to a single 80 x 10(3) Mr band on a silver-stained SDS-polyacrylamide gel, and has CMF activity at a concentration of approximately 4 pM (0.3 ng ml-1). Our results suggest that CMF is a secreted factor that functions in vivo as an indicator of cell density in starved cells. At high cell densities, the concentration of CMF is sufficient to enable cells to enter the multicellular stage of the developmental cycle. When present below a threshold concentration, cells do not initiate the expression of genes required for early development. This factor plays an essential role in the regulatory pathway necessary for cells to obtain the developmental competence to induce prestalk and prespore gene expression in response to cAMP.