Background: Up-regulation of the hepatocyte growth factor (HGF), its transmembrane tyrosine kinase receptor (c-Met), and urokinase type plasminogen activator (uPA), is associated with the development and metastasis of various types of cancers. However, the mechanisms by which HGF/c-Met signaling mediates cancer progression and metastasis are unclear.
Methods: We investigated the roles of HGF/c-Met in tumor progression and metastasis in NUGC-3 and MKN-28 stomach cancer cell lines.
Results: Treatment with HGF increased c-Met phosphorylation in a dose-dependent manner, as well as increasing cell proliferation. HGF treatment also increased the protein level and the activity of uPA in NUGC-3 and MKN-28 cells. A monoclonal antibody against human uPA receptor (uPAR), mAb 3936, inhibited HGF-mediated tumor cell invasion in a dose-dependent manner. Down-regulation of uPA using uPA-shRNA induced a decrease in in vitro cell invasion in NUGC-3 cells.
Conclusions: These results suggest that NUGC-3 and MKN-28 cells express functional c-Met, which may provide a therapeutic target for interfering with metastases of cancer cells by inhibiting uPA and uPAR-mediated proteolysis.