During seed development, various storage proteins and hydrolases accumulate in specialized storage vacuoles, the protein bodies, via an elaborate intracellular transport system involving the rough endoplasmic reticulum, the Golgi apparatus, and transit vesicles. Clathrin-coated vesicles, similar to those which transport lysosomal proteins to lysosomes, an organelle analogous to the vacuole, in animal cells, could be involved in this intracellular transport mechanism. Clathrin-coated vesicles have been isolated from cotyledons of developing pea (Pisum sativum L.) seeds at the time of rapid protein accumulation and analyzed for the presence of protein body constitutents. A 23,000 M(r) polypeptide, corresponding to pea lectin precursor, was found associated with the vesicles, as determined by immunoblotting. The lectin precursor was apparently sequestered within the vesicles, as the polypeptide was only susceptible to proteolysis if detergents were included in the digestion buffer. A number of glycosidase activities, including alpha-mannosidase, alpha-galactosidase, and beta-N-acetylhexosaminidase, were also associated with the vesicles. Thus, it appears that clathrin-coated vesicles are involved in the intracellular transport of storage proteins during seed development.