Electrodeposition of Bi(x)Fe(1-x) intermetallic compound nanowire arrays and their magnetic properties

J Phys Chem B. 2006 May 11;110(18):8965-70. doi: 10.1021/jp060411n.

Abstract

There have been few reports on Bi-Fe intermetallic compounds because Bi and Fe are immiscible in the equilibrium states and neither alloy nor intermetallic compound exists in the binary system. In this paper, we show that, by using the nanometer-scale templates based synthesis in conjunction with the electrochemical deposition, it is possible to mix in solid solution elements that are immiscible in traditional fabrication methods. The preparation of Bi-Fe intermetallic compound nanowire arrays was investigated via an electrodeposition route by using a polycarbonate (PC) membrane template. Cyclic voltammetry, potentiostatic transient, and potentiostatic stripping were used to study the formation of Bi(x)Fe(1-x) intermetallic compounds. The compositions of Bi(1-x)Fe(x) intermetallic compound nanowire arrays were sensitive to the bath compositions and the electrodeposition potentials, and the length could be easily adjusted by varying the electrodeposition time. The electrodeposited Bi(1-x)Fe(x) intermetallic compound nanowire arrays had a parallel-to-the-wire easy magnetization. Furthermore, the spin-glass such as behavior and an unusually large characteristic time, which was about 5.26 h, were found in Bi(1-x)Fe(x) intermetallic compound nanowire arrays at room temperature.