Syntaxin-1A actions on sulfonylurea receptor 2A can block acidic pH-induced cardiac K(ATP) channel activation

J Biol Chem. 2006 Jul 14;281(28):19019-28. doi: 10.1074/jbc.M513160200. Epub 2006 May 3.

Abstract

During cardiac ischemia, ATP stores are depleted, and cardiomyocyte intracellular pH lowers to <7.0. The acidic pH acts on the Kir6.2 subunit of K(ATP) channels to reduce its sensitivity to ATP, causing channel opening. We recently reported that syntaxin-1A (Syn-1A) binds nucleotide binding folds (NBF)-1 and NBF2 of sulfonylurea receptor 2A (SUR2A) to inhibit channel activity (Kang, Y., Leung, Y. M., Manning-Fox, J. E., Xia, F., Xie, H., Sheu, L., Tsushima, R. G., Light, P. E., and Gaisano, H. Y. (2004) J. Biol. Chem. 279, 47125-47131). Here, we examined Syn-1A actions on SUR2A to influence the pH regulation of cardiac K(ATP) channels. K(ATP) channel currents from inside-out patches excised from Kir6.2/SUR2A expressing HEK293 cells and freshly isolated cardiac myocytes were increased by reducing intracellular pH from 7.4 to 6.8, which could be blocked by increasing concentrations of Syn-1A added to the cytoplasmic surface. Syn-1A had no effect on C-terminal truncated Kir6.2 (Kir6.2-deltaC26) channels expressed in TSA cells without the SUR subunit. In vitro binding and co-immunoprecipitation studies show that Syn-1A binding to SUR2A or its NBF-1 and NBF-2 domain proteins increased progressively as pH was reduced from 7.4 to 6.0. The enhancement of Syn-1A binding to SUR2A by acidic pH was further regulated by Mg2+ and ATP. Therefore, pH regulates Kir.6.2/SUR2A channels not only by its direct actions on the Kir6.2 subunit but also by modulation of Syn-1A binding to SUR2A. The increased Syn-1A binding to the SUR2A at acidic pH would assert some inhibition of the K(ATP) channels, which may serve as a "brake" to temper the fluctuation of low pH-induced K(ATP) channel opening that could induce fatal reentrant arrhythmias.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP-Binding Cassette Transporters / metabolism*
  • Adenosine Triphosphate / chemistry
  • Animals
  • Humans
  • Hydrogen-Ion Concentration
  • Magnesium / chemistry
  • Male
  • Myocytes, Cardiac / cytology
  • Potassium / chemistry
  • Potassium Channels / metabolism*
  • Potassium Channels, Inwardly Rectifying / metabolism*
  • Protein Structure, Tertiary
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, Drug / metabolism*
  • Sulfonylurea Receptors
  • Syntaxin 1 / physiology*

Substances

  • ABCC9 protein, human
  • ATP-Binding Cassette Transporters
  • Kir6.2 channel
  • Potassium Channels
  • Potassium Channels, Inwardly Rectifying
  • Receptors, Drug
  • Sulfonylurea Receptors
  • Syntaxin 1
  • Adenosine Triphosphate
  • Magnesium
  • Potassium