Inhibition of replicative DNA synthesis by ionizing radiation is partly caused by an active, signal-mediated response termed the "S-phase checkpoint." Defects in this checkpoint were first discovered in the human inherited disorder ataxia-telangiectasia (AT). gamma-Irradiated cells from AT patients consistently display a diminished inhibition of DNA synthesis, a feature called "radioresistant DNA synthesis" (RDS). RDS has been widely used as a diagnostic marker for AT, in postnatal as well as prenatal material. The regulation and control of the S-phase checkpoint is complex and multifaceted; it is not restricted to ionizing radiation, but can occur after many genotoxic stressors. Defects in both upstream control functions, such as ATM, NBS1, and MRE11, as well as downstream modulators can provoke an RDS phenotype. Here a simple, accurate and highly reproducible experimental protocol is presented for the generation of DNA synthesis inhibition curves from cells in culture.