The separation of highly alkylated polycyclic aromatic compounds according to the size of their aromatic system is investigated using the polycyclic aromatic sulfur heterocycles in vacuum gas oil. A large number of reference compounds containing several parent ring systems and different alkylation patterns were first investigated to characterize the retention of polycyclic aromatic compounds likely to occur in high-boiling petroleum samples. A beta-cyclodextrin phase, Merck ChiraDex, was found to be more suitable than chemically bonded aminopropanosilane and tetrachlorophthalimide in normal-phase HPLC with respect to a combination of selectivity towards the number of aromatic double bonds and degree of influence of the alkyl groups of the aromatic compounds. Finally the preseparated polycyclic aromatic sulfur heterocycles from a vacuum gas oil were fractionated according to the number of condensed aromatic rings on the ChiraDex phase and were characterized by Fourier transform ion cyclotron resonance mass spectrometry.