Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin

J Biol Chem. 2006 Jul 28;281(30):21332-21344. doi: 10.1074/jbc.M603814200. Epub 2006 May 4.

Abstract

Voltage sensing by voltage-gated sodium channels determines the electrical excitability of cells, but the molecular mechanism is unknown. beta-Scorpion toxins bind specifically to neurotoxin receptor site 4 and induce a negative shift in the voltage dependence of activation through a voltage sensor-trapping mechanism. Kinetic analysis showed that beta-scorpion toxin binds to the resting state, and subsequently the bound toxin traps the voltage sensor in the activated state in a voltage-dependent but concentration-independent manner. The rate of voltage sensor trapping can be fit by a two-step model, in which the first step is voltage-dependent and correlates with the outward gating movement of the IIS4 segment, whereas the second step is voltage-independent and results in shifted voltage dependence of activation of the channel. Mutations of Glu(779) in extracellular loop IIS1-S2 and both Glu(837) and Leu(840) in extracellular loop IIS3-S4 reduce the binding affinity of beta-scorpion toxin. Mutations of positively charged and hydrophobic amino acid residues in the IIS4 segment do not affect beta-scorpion toxin binding but alter voltage dependence of activation and enhance beta-scorpion toxin action. Structural modeling with the Rosetta algorithm yielded a three-dimensional model of the toxin-receptor complex with the IIS4 voltage sensor at the extracellular surface. Our results provide mechanistic and structural insight into the voltage sensor-trapping mode of scorpion toxin action, define the position of the voltage sensor in the resting state of the sodium channel, and favor voltage-sensing models in which the S4 segment spans the membrane in both resting and activated states.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Amino Acid Sequence
  • Cell Line
  • Humans
  • Kidney / cytology
  • Kinetics
  • Models, Molecular
  • Molecular Sequence Data
  • Mutagenesis, Site-Directed
  • Mutation
  • Protein Binding
  • Scorpion Venoms / chemistry*
  • Sequence Homology, Amino Acid
  • Sodium Channels / chemistry*
  • Structure-Activity Relationship

Substances

  • Scorpion Venoms
  • Sodium Channels