Parametric response surface models for analysis of multi-site fMRI data

Med Image Comput Comput Assist Interv. 2005;8(Pt 1):352-9. doi: 10.1007/11566465_44.

Abstract

Analyses of fMRI brain data are often based on statistical tests applied to each voxel or use summary statistics within a region of interest (such as mean or peak activation). These approaches do not explicitly take into account spatial patterns in the activation signal. In this paper, we develop a response surface model with parameters that directly describe the spatial shapes of activation patterns. We present a stochastic search algorithm for parameter estimation. We apply our method to data from a multi-site fMRI study, and show how the estimated parameters can be used to analyze different sources of variability in image generation, both qualitatively and quantitatively, based on spatial activation patterns.

Publication types

  • Evaluation Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Artificial Intelligence
  • Brain / anatomy & histology*
  • Brain / physiology*
  • Brain Mapping / methods*
  • Computer Simulation
  • Humans
  • Image Enhancement / methods*
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional / methods
  • Magnetic Resonance Imaging / methods*
  • Models, Biological
  • Models, Statistical
  • Reproducibility of Results
  • Sensitivity and Specificity