Substrates of aluminum (Al) deposited by physical vapor deposition onto Si substrates and then chemically reacted with perfluorodecylphosphonic acid (PFDPAlSi), decylphosphonic acid (DPAlSi), and octadecylphosphonic acid (ODPAlSi) were studied by x-ray photoelectron spectroscopy (XPS), contact angle measurements, atomic force microscopy (AFM), and friction force microscopy, a derivative of AFM, to characterize their surface chemical composition, roughness, and micro-/nanotribological properties. XPS analysis confirmed the presence of perfluorinated and nonperfluorinated alkylphosphonate molecules on the PFDPAlSi, DPAlSi, and ODPAlSi. The sessile drop static contact angle of pure water on PFDPAlSi was typically more than 130 degrees and on DPAlSi and ODPAlSi typically more than 125 degrees indicating that all phosphonic acid reacted AlSi samples were very hydrophobic. The surface roughness for PFDPAlSi, DPAlSi, ODPAlSi, and bare AlSi was approximately 35 nm as determined by AFM. The surface energy for PFDPAlSi was determined to be approximately 11 mNm by the Zisman plot method compared to 21 and 20 mNm for DPAlSi and ODPAlSi, respectively. Tribology involves the measure of lateral forces due to friction and adhesion between two surfaces. Friction, adhesion, and wear play important roles in the performance of micro-/nanoelectromechanical systems. PFDPAlSi gave the lowest adhesion and coefficient of friction values while bare AlSi gave the highest. The adhesion and coefficient of friction values for DPAlSi and ODPAlSi were comparable.