The membrane complex lipids of human fibroblasts and differentiated rat cerebellar granule cells in culture were metabolically radiolabeled with [1-(3)H]sphingosine, L-[3-(3)H]serine and [9,10-(3)H]palmitic acid. A relevant efflux of radioactive sphingolipids and phosphatidylcholine was observed from cells to the culture medium in the presence of fetal calf serum. This event was independent of the concentration and structure of the metabolic precursor administered to cells, and it was linearly time-dependent. The radioactive lipid patterns present in the medium were different from those present in the cells. Radioactive sphingomyelin and ganglioside GM3 containing short acyl chains were the main species present in the medium from human fibroblasts, while sphingomyelin and GD3 ganglioside in that from neuronal cells. In the absence of proteins in the culture medium, the efflux of complex lipids was much lower than in the presence of serum, and the patterns of released molecules were again different from those of cells.