Ciona intestinalis as an emerging model organism: its regeneration under controlled conditions and methodology for egg dechorionation

J Zhejiang Univ Sci B. 2006 Jun;7(6):467-74. doi: 10.1631/jzus.2006.B0467.

Abstract

The ascidian Ciona intestinalis is a model organism of developmental and evolutionary biology and may provide crucial clues concerning two fundamental matters, namely, how chordates originated from the putative deuterostome ancestor and how advanced chordates originated from the simplest chordates. In this paper, a whole-life-span culture of C. intestinalis was conducted. Fed with the diet combination of dry Spirulina, egg yolk, Dicrateria sp., edible yeast and weaning diet for shrimp, C. intestinalis grew up to average 59 mm and matured after 60 d cultivation. This culture process could be repeated using the artificially cultured mature ascidians as material. When the fertilized eggs were maintained under 10, 15, 20, 25 degrees C, they hatched within 30 h, 22 h, 16 h and 12 h 50 min respectively experiencing cleavage, blastulation, gastrulation, neurulation, tailbud stage and tadpole stage. The tadpole larvae were characterized as typical but simplified chordates because of their dorsal nerve cord, notochord and primordial brain. After 8 - 24 h freely swimming, the tadpole larvae settled on the substrates and metamorphosized within 1- 2 d into filter feeding sessile juvenile ascidians. In addition, unfertilized eggs were successfully dechorionated in filtered seawater containing 1% Tripsin, 0.25% EDTA at pH of 10.5 within 40 min. After fertilization, the dechorionated eggs developed well and hatched at normal hatching rate. In conclusion, this paper presented feasible methodology for rearing the tadpole larvae of C. intestinalis into sexual maturity under controlled conditions and detailed observations on the embryogenesis of the laboratory cultured ascidians, which will facilitate developmental and genetic research using this model system.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Ciona intestinalis / growth & development*
  • Embryonic Development / physiology
  • Female
  • Male
  • Metamorphosis, Biological / physiology
  • Zygote / growth & development