Bone adaptations to loading extend beyond mineral accrual to geometric markers of bone strength. Available technology and regional differences in cortical bone dictate how bone strength is reported. Examination of bone strength at two differentially-loaded skeletal sites using hip structure analysis (HSA) and bone strength index (BSI) is under-explored in adolescent sporting populations. The purpose of this study was to compare HSA at the femoral neck and BSI at the distal tibia in adolescent middle-distance runners and age- and gender-matched controls. Four groups of 20 adolescents aged 14-18 years were composed of male and female middle-distance runners, and male and female controls. Distal tibial BSI was calculated using data from dual energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI). Calculations for femoral neck strength were acquired from DXA-derived HSA software. Female athletes displayed greater distal tibial BSI than controls t(38)=3.4, p=0.002, but femoral neck bone measures did not differ. In males, no group differences were found at either the distal tibia or femoral neck. In conclusion, exposure to similar high training loads may advantage female adolescent athletes more than male adolescent athletes compared with less active peers in bone strength at the distal tibia.