Objective: To construct the eukaryotic expression vector of MJD1 with normal copies of CAG trinucleotide repetition and MJD1 with CAG trinucleotide repetition expansion mutation respectively, and to determine whether the polyglutamine expansion in ataxin-3 could lead to the formation of intranuclear aggregation.
Methods: The coding sequence of wild-type MJD1 and mutant MJD1 was amplified by PCR from pAS2-1-MJD20Q and pAS2-1-MJD68Q respectively. After being digested with BamH I and Hind III, the PCR products were inserted into pcDNA3. 1-Myc-His(-) B. The recombinant plasmids pcDNA3.1-Myc-His(-) B-MJD20Q and pcDNA3.1-Myc-His(-) B-MJD68Q were identified by enzyme digestion analysis and DNA sequencing. The recombinant plasmid was transfected into SH-SYSY cells and the expression of MJD1 in the transfected cells was analyzed by Western blot. The immunofluorescence of the transfected cells was examined using a confocal microscope to observe the formation of intranuclear aggregation.
Results: Enzyme digestion analysis and DNA sequencing showed that the target gene was cloned into pcDNA3. 1-Myc-His(-) B. The expression of MJD1 in the transfected cells was confirmed by Western blot; The SH-SY5Y cells transfected with pcDNA3. 1-Myc-His(-) B-MJD68Q showed the formation of intranuclear aggregation, but the cells transfected with pcDNA3.1-Myc-His(-) B-MJD20Q did not show such phenomenon.
Conclusion: The eukaryotic expression vectors of MJD1 has been successfully constructed; The polyglutamine expansion in ataxin-3 could lead to the formation of intranuclear aggregation.