There is an urgent need for the development of a passive immunotherapy against the category B select agent ricin, a lethal ribosome-inactivating toxin composed of an enzymatic A subunit (RTA) and a single binding B subunit (RTB). To date, only one monoclonal antibody (MAb), a mouse immunoglobulin G (IgG1) against RTA called R70, has been deemed sufficiently potent in animal models to warrant further testing in humans. In this study, we have identified and characterized MAb 24B11, a murine IgG1 directed against RTB. In a Vero cell cytotoxicity assay, 24B11 was approximately two times more effective at neutralizing ricin than was R70. The equilibrium dissociation constants of 24B11 (KD = 4.2 x 10(-9) M) and R70 (KD = 3.2 x 10(-9) M) were virtually identical, suggesting that the difference in neutralization activity between the two MAbs was not due to differing affinities for the toxin. 24B11 blocked ricin attachment to galactoside receptors on primary mouse splenocytes and on the apical surfaces of human mucosal epithelial cell monolayers. Surprisingly, R70 also effectively interfered with ricin attachment to receptors on cell surfaces. Using a phage-displayed peptide library, we determined that 24B11 binds an epitope on RTB adjacent to, but not within, one of the two galactose binding domains. Finally, we demonstrate that R70 and 24B11, when combined, function synergistically to neutralize ricin in vitro, raising the possibility that these two MAbs could serve as a novel immunotherapeutic in vivo.