Urinary proteome of steroid-sensitive and steroid-resistant idiopathic nephrotic syndrome of childhood

Am J Nephrol. 2006;26(3):258-67. doi: 10.1159/000093814. Epub 2006 Jun 7.

Abstract

The response to steroid therapy is used to characterize the idiopathic nephrotic syndrome (INS) of childhood as either steroid-sensitive (SSNS) or steroid-resistant (SRNS), a classification with a better prognostic capability than renal biopsy. The majority (approximately 80%) of INS is due to minimal change disease but the percentage of focal and segmental glomerulosclerosis is increasing. We applied a new technological platform to examine the urine proteome to determine if different urinary protein excretion profiles could differentiate patients with SSNS from those with SRNS. Twenty-five patients with INS and 17 control patients were studied. Mid-stream urines were analyzed using surface enhanced laser desorption and ionization mass spectrometry(SELDI-MS). Data were analyzed using multiple bioinformatic techniques. Patient classification was performed using Biomarker Pattern Software and a generalized form of Adaboost and predictive models were generated using a supervised algorithm with cross-validation. Urinary proteomic data distinguished INS patients from control patients, irrespective of steroid response, with a sensitivity of 92.3%, specificity of 93.7%, positive predictive value of 96% and a negative predictive value of 88.2%. Classification of patients as SSNS or SRNS was 100%. A protein of mass 4,144 daltons was identified as the single most important classifier in distinguishing SSNS from SRNS. SELDI-MS combined with bioinformatics can identify different proteomic patterns in INS. Characterization of the proteins of interest identified by this proteomic approach with prospective clinical validation may yield a valuable clinical tool for the non-invasive prediction of treatment response and prognosis.

Publication types

  • Controlled Clinical Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Biomarkers / blood
  • Drug Resistance
  • Female
  • Humans
  • Nephrotic Syndrome / diagnosis
  • Nephrotic Syndrome / drug therapy*
  • Nephrotic Syndrome / urine*
  • Proteome / analysis*
  • Steroids / therapeutic use*

Substances

  • Biomarkers
  • Proteome
  • Steroids