Brillouin measurements have been made of the spin dynamics of high-density two-dimensional hexagonally ordered 20 nm diameter Fe48Co52 nanowire arrays, with various interwire spacings, as a function of longitudinal magnetic field. The experimental data are analyzed within the Arias-Mills theory based on interwire dipolar couplings in the arrays. The results provide conclusive evidence of collective spin waves arising from the dipolar coupling which is manifested as a reduction in spin wave frequency with decreasing interwire spacing.