Introduction: Atrophy of the hippocampus, amygdala and entorhinal cortex can be found in neurodegenerative diseases, head trauma and epilepsy and are expressed by means of volume reductions. The ability to detect these changes quantitatively depends on accurate comparisons with normative databases.
Aim: To present standard magnetic resonance imaging (MRI) volumes of the mesio-temporal lobe structures and an objective statistical methodology for contrasting pathological states.
Subjects and methods: Volumes of the right and left hippocampi, amygdalae and entorhinal cortex were measured from MRI in 34 right-handed healthy volunteers, aged 19-52 years. Data were normalized for the individual variation in total intracranial volume. Reproducibility was confirmed by intra/inter-observer tests. The statistical analyses included asymmetry comparisons, correlations between volumes and tests to assess the influence of age, gender and general morphometry (body mass index and height). For each volume, we further defined a normative interval by means of 99% confidence ellipses, accordingly to Hotteling's method.
Results: Right-left asymmetry in the volumes of the hippocampus and entorhinal cortex was a normal finding. Structures located in the right hemisphere were larger than the left by a small but statistically significant amount. No asymmetry was found in the amygdala. There was no correlation in-between these volumes. Gender differences were exclusively noted in the absolute amygdala volumes (male > female) but were eliminated by the normalization procedure. No effect of age or morphometry was seen in the absolute or normalized volumes (except for a milder correlation between hippocampal volumes and height). Confidence ellipses were built for every structure and provided a precise reading of the data. Particularly, it allowed for a clear distinction of pathological asymmetries and bilateral cases.
Conclusion: These normative volumes serve as a reference for the assessment of pathologic groups within similar age-range. The use of a single graphic representation simplifies the clinical interpretation and enhances the precision of the results.