1. We studied tolerance to cannabinoid agonist action by comparing the in vitro inhibition of electrically evoked contractions of longitudinal muscle from small intestine of human and guinea-pig (myenteric plexus preparations) after 48-h incubation with the synthetic agonist (+) WIN 55,212-2. We also investigated the intrinsic response to the selective cannabinoid CB(1) receptor antagonist rimonabant in control and tolerant strips. 2. (+) WIN 55,212-2 inhibited guinea-pig (IC(50) 4.8 nM) and human small intestine (56 nM) contractions with similar potency before or after 48-h incubation in drug-free conditions; this effect was competitively antagonized by rimonabant (pA(2), 8.4, 8.2). A 48-h preincubation with (+) WIN 55,212-2, but not with (-) WIN 55,212-3, completely abolished the acute agonist response in both tissue preparations. The opiate K-receptor agonist U69593 inhibited human small intestine contractions with a similar potency in control and strips tolerant to (+) WIN 55,212-2, IC(50) 39 and 43 nM. 3. Unlike human tissue, in guinea-pig small intestine, which has a high level of endocannabinoids, rimonabant alone increased the twitches induced by the electrical field stimulation (EC(50) 100 nM) with a maximal effect of 123%. 4. In strips tolerant to (+) WIN 55,212-2, rimonabant markedly increased (155%) the electrical twitches in human ileum and in guinea-pig myenteric plexus smooth muscle (133%). 5. This study shows tolerance can be induced to the cannabinoids' action in intestinal strips of human and guinea-pig by long in vitro incubation with the agonist (+) WIN 55,212-2.