Heparan sulfate proteoglycans, which bear long chains of heparan sulfate glycosaminoglycan, play significant roles during embryogenesis, including the formation of the CNS. However, their involvement in nerve regeneration has not yet been clarified. Here, we found that the mRNA expression of EXT2, one of the crucial enzymes for heparan sulfate-glycosaminoglycan synthesis, was markedly up-regulated in injured hypoglossal motor neurons after axotomy. In addition, immunohistochemical staining with an antibody specific for heparan sulfate-glycosaminoglycan chains demonstrated increased expression of heparan sulfate-glycosaminoglycan chains in the injured nucleus. Furthermore, the mRNA expressions of glypican-1 and syndecan-1, which are both well-known heparan sulfate proteoglycans, were prominently up-regulated in injured motor neurons. These results suggest that the biosynthesis of heparan sulfate chains promoted by EXT2 is activated in injured motor neurons, and that glypican-1 and syndecan-1 are potent candidates for heparan sulfate proteoglycans involved in peripheral nerve regeneration.