The V1Vo-ATPase from Enterococcus hirae catalyzes ATP hydrolysis coupled with sodium translocation. Mutants with deletions of each of 10 subunits (NtpA, B, C, D, E, F, G, H, I, and K) were constructed by insertion of a chloramphenicol acetyltransferase gene into the corresponding subunit gene in the genome. Measurements of cell growth rates, 22Na+ efflux activities, and ATP hydrolysis activities of the membranes of the deletion mutants indicated that V-ATPase requires nine of the subunits, the exception being the NtpH subunit. The results of Western blotting and V1-ATPase dissociation analysis suggested that the A, B, C, D, E, F, and G subunits constitute the V1 moiety, whereas the V0 moiety comprises the I and K subunits.