The continuous production of the CXC ligand 1 (CXCL1) chemokine by melanoma cells is a major effector of tumor growth. We have previously shown that the constitutive expression of this chemokine is dependent upon transcription factors nuclear factor-kappa B (NF-kappaB), stimulating protein-1 (SP1), high-mobility group-I/Y (HMGI/Y), CAAT displacement protein (CDP) and poly(ADP-ribose) polymerase-1 (PARP-1). In this study, we demonstrate for the first time the mechanism of transcriptional regulation of CXCL1 through PARP-1 in melanoma cells. In its inactive state, PARP-1 binds to the CXCL1 promoter in a sequence-specific manner and prevents binding of NF-kappaB (p65/p50) to its element. However, activation of the PARP-1 enzymatic activity enhances CXCL1 expression, owing to the loss of PARP-1 binding to the CXCL1 promoter, accompanied by enhanced binding of p65 to the promoter. The delineation of the role of NF-kappaB-interacting factors in the putative CXCL1 enhanceosome will provide key information in developing strategies to block constitutive expression of this and other chemokines in cancer and to develop targeted therapy.