Urinary tract infection with Proteus mirabilis may lead to serious complications, including cystitis, acute pyelonephritis, fever, bacteremia, and death. In addition to the production of hemolysin and the enzyme urease, fimbriae and flagellum-mediated motility have been postulated as virulence factors for this species. We purified mannose-resistant/proteuslike (MR/P) fimbriae and flagella from strains CFT322 and HU2450, respectively. Electron microscopy revealed highly concentrated preparations of fimbriae and flagella. Fimbrial and flagellar structural subunits were estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 18.5 and 41 kDa, respectively. N-terminal sequencing revealed that 10 of the first 20 amino acids of the major MR/P subunit matched the sequence of the P. mirabilis uroepithelial cell adhesin N terminus and 11 of 20 amino acids matched the predicted amino acid sequence of the Escherichia coli P fimbriae structural subunit, PapA. In addition, 90 and 80% homologies were found between the first 20 amino acids of P. mirabilis flagellin and those of Salmonella typhimurium phase-1 flagellin and the E. coli hag gene product, respectively. An enzyme-linked immunosorbent assay using purified antigens showed a strong reaction between the MR/P fimbriae or flagella and sera of CBA mice challenged transurethrally with P. mirabilis. A possible role for MR/P fimbriae in the pathogenesis of urinary tract infection is supported by (i) a strong immune response to the antigen in experimentally infected animals, (ii) amino acid sequence similarity to other enteric surface structure, and (iii) our previously reported observation that MR/P fimbriae are expressed preferentially as the sole fimbrial type in human pyelonephritis isolates.