We investigate experimentally the effect of a random distribution of nitrogen (N) impurities on the Landau-level spectrum of a GaAs quantum well. Our magnetotunneling study reveals complex and nonequally spaced Landau levels and a quenching of the Landau states at a well-defined bias and electron energy which is resonant with that of the N atoms. Analysis of the magnetic field dependence of the tunnel current into the Landau levels of the well also provides quantitative information about the nonresonant component of the N-related scattering potential.