High-resolution imaging of ferroelectric materials using piezoresponse force microscopy (PFM) is demonstrated in an aqueous environment. The elimination of both long-range electrostatic forces and capillary interactions results in a localization of the ac field to the tip-surface junction and allows the tip-surface contact area to be controlled. This approach results in spatial resolutions approaching the limit of the intrinsic domain-wall width. Imaging at frequencies corresponding to high-order cantilever resonances minimizes the viscous damping and added mass effects on cantilever dynamics and allows sensitivities comparable to ambient conditions. PFM in liquids will provide novel opportunities for high-resolution studies of ferroelectric materials, imaging of soft polymer materials, and imaging of biological systems in physiological environments on, ultimately, the molecular level.