Four different mutations of the cytochrome P450 CYP2D6 gene associated with the poor metabolizer phenotype (PM) of the debrisoquine/sparteine polymorphism were analyzed by Xba I restriction fragment length polymorphism (RFLP) analysis and a polymerase chain reaction (PCR)-based DNA amplification method in DNA of 394 healthy European subjects; 341 of these were phenotyped by sparteine or debrisoquine administration and urinary metabolic ratios (MR). Our study demonstrates the efficiency of the PCR-test for phenotype prediction; 96.4% of individuals were correctly predicted, i.e., 100% of the extensive metabolizers (EMs) and 86.0% of the poor metabolizers (PMs). In contrast, Xba I RFLP analysis was far less informative, predicting the phenotype in only 26.8% of PMs. By combining both DNA tests, the prediction rate of the PM phenotype increased to 90.6%. A point mutation at a splice-site consensus sequence termed D6-B represented the most common mutant CYP2D6 gene and accounted for more than 75% of mutant alleles. In addition, other known mutations such as D6-D (14%), D6-A (5%), and the rare D6-C mutation bring the identified mutant alleles to greater than 95% of all mutant PM-alleles. Most of Xba I 44-kb alleles were confirmed as mutant alleles carrying the D6-B mutation. However, 9.7% did not have this mutation and may express a functional CYP2D6 gene. Moreover, all Xba I 16 + 9-kb alleles contained the D6-B mutation. Heterozygous EM individuals had a significantly higher MR when compared to homozygous EMs. Genotyping provides an important advantage for investigations of the influence of CYP2D6 activity on drug therapy and its association with certain diseases.