We describe evidence for a novel mechanism of monoclonal antibody (MAb)-directed nanoparticle (immunoliposome) targeting to solid tumors in vivo. Long-circulating immunoliposomes targeted to HER2 (ErbB2, Neu) were prepared by the conjugation of anti-HER2 MAb fragments (Fab' or single chain Fv) to liposome-grafted polyethylene glycol chains. MAb fragment conjugation did not affect the biodistribution or long-circulating properties of i.v.-administered liposomes. However, antibody-directed targeting also did not increase the tumor localization of immunoliposomes, as both targeted and nontargeted liposomes achieved similarly high levels (7-8% injected dose/g tumor tissue) of tumor tissue accumulation in HER2-overexpressing breast cancer xenografts (BT-474). Studies using colloidal gold-labeled liposomes showed the accumulation of anti-HER2 immunoliposomes within cancer cells, whereas matched nontargeted liposomes were located predominantly in extracellular stroma or within macrophages. A similar pattern of stromal accumulation without cancer cell internalization was observed for anti-HER2 immunoliposomes in non-HER2-overexpressing breast cancer xenografts (MCF-7). Flow cytometry of disaggregated tumors posttreatment with either liposomes or immunoliposomes showed up to 6-fold greater intracellular uptake in cancer cells due to targeting. Thus, in contrast to nontargeted liposomes, anti-HER2 immunoliposomes achieved intracellular drug delivery via MAb-mediated endocytosis, and this, rather than increased uptake in tumor tissue, was correlated with superior antitumor activity. Immunoliposomes capable of selective internalization in cancer cells in vivo may provide new opportunities for drug delivery.