In this paper we describe the avian homolog of mammalian CD45. We show that this Ag is expressed on all leukocytes but not on erythroid cells or their immediate precursors. Immunoprecipitations demonstrated that B lineage cells from the bursa of Fabricius expressed a higher molecular mass variant (215 kDa) than did T lineage cells from the thymus (190 kDa), and crucially, these high molecular mass molecules had intrinsic phosphotyrosine phosphatase activity characteristic of mammalian CD45. We show that levels of CD45 expression as detected by mAb LT40 in the avian thymus are heterogeneous and further that mAb LT40 can deplete all phosphotyrosine phosphatase activity from thymocyte membrane preparations. Therefore total levels of CD45 are heterogeneous among avian thymocytes. Specifically, 87 to 89% of thymocytes expressed fourfold higher levels of surface CD45 (CD45hi) than the remaining 11 to 13% (CD45lo). The CD45lo population contained exclusively thymocytes with the phenotype CD3-4-8lo, characteristic of the immediate precursors to the CD3-4+8+ thymic population which are CD45hi. The shift from low to high levels of surface CD45 expression therefore occurred at the same stage as the transition from CD4-8lo to CD4+8+ and before the expression of CD3. The protein tyrosine kinase activity associated with CD4 and CD8 (p56lck) and the phosphatase activity of CD45 have been implicated elsewhere in jointly regulating peripheral T cell signal transduction and subsequent cellular responses. The coordinated expression of high levels of CD45 with both CD4 and CD8 in the avian thymus supports the possibility that these molecules may function together in regulating thymocyte growth and/or differentiation.