The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has made exploration of questions surrounding the evolution of pathogenesis tractable. Here we present the results of a detailed comparison of the genomes of Yersinia pseudotuberculosis IP32593 and three strains of Yersinia pestis (CO92, KIM10, and 91001). There appear to be between 241 and 275 multigene families in these organisms. There are 2,568 genes that are identical in the three Y. pestis strains, but differ from the Y. pseudotuberculosis strain. The changes found in some of these families, such as the kinases, proteases, and transporters, are illustrative of how the evolutionary jump from the free-living enteropathogen Y. pseudotuberculosis to the obligate host-borne blood pathogen Y. pestis was achieved. We discuss the composition of some of the most important families and discuss the observed divergence between Y. pseudotuberculosis and Y. pestis homologs.
(c) 2006 Wiley-Liss, Inc.