Conventional antibodies react with antigens reversibly. We report the formation of unusually stable complexes of HIV gp120 and nucleophilic antibodies raised by immunization with an electrophilic HIV gp120 analog (E-gp120). The stability of the complexes was evident from their very slow dissociation in a nondenaturing solvent (approximate t(1/2) 18.5 days) and their resistance to dissociation by a denaturant commonly employed to disrupt noncovalent protein-protein binding (sodium dodecyl sulfate). Kinetic studies indicated time-dependent and virtually complete progression of the antibody-gp120 complexes from the initial noncovalent state to a poorly dissociable state. The antibodies to E-gp120 displayed improved covalent reactivity with an electrophilic phosphonate probe compared to control antibodies, suggesting their enhanced nucleophilicity. One of the stably binding antibodies neutralized the infectivity of CCR5-dependent primary HIV strains belonging to clades B and C. These findings suggest the feasibility of raising antibodies capable of long-lasting inactivation of antigens by electrophilic immunization.