The murine transmembrane glycoprotein CD83 is an important regulator for both thymic T cell maturation and peripheral T cell response. CD83 deficiency leads to a block in the thymic maturation of CD4-positive T cells, and interference with peripheral CD83/CD83 ligand interaction by addition of soluble CD83 suppresses immune responses in vivo and in vitro. Here we report the generation of a mouse transgenic for a fusion protein consisting of the extracellular domain of murine CD83 fused to the constant part of human IgG1 heavy chain. Thymic selection of CD4-positive T cells was unchanged in CD83Ig transgenic and in CD83Ig/OT-2 double-transgenic mice. However, thymic and peripheral CD4-positive T cells derived from CD83Ig/OT-2 transgenic mice displayed a reduced cytokine response to antigenic stimulation in vitro, whereas CD83Ig/OT-1-derived CD8-positive T cells showed normal cytokine secretion. The T cell defect was relevant in vivo, since a sub-lethal infection with Trypanosoma cruzi led to an increased parasitemia and reduced survival rate of CD83Ig transgenic mice compared to wild-type C57BL/6 mice. In contrast, in vivo application of recombinant CD83Ig did not result in an increase in parasitemia. Taken together our data suggest that thymic selection in the presence of CD83Ig leads to an intrinsic T cell defect of CD4-positive T cells resembling the phenotype described for CD4-positive T cells derived from CD83-deficient mouse strains.