Tumor angiogenesis imaging should provide non-invasive assays of tumor vascular characteristics to supplement the now conventional diagnostic imaging goals of depicting tumor location, size, and morphology. This article will review the current status of angiogenesis imaging approaches, considering ultrasound, CT, MR, SPECT, PET and optical techniques with attention to their respective capabilities and limitations. As a group, these imaging methods have some potential to depict and quantify tumor microvascular features, including those considered to be functionally associated with tumor angiogenesis. Additionally, new molecule-specific imaging techniques may serve to depict those biochemical pathways and regulatory events that control blood vessel growth and proliferation. Non-invasive monitoring of anti-angiogenic therapies has great appeal and should find wide application for defining tumor microvascular and metabolic changes, because treatment-related changes in tumor morphology tend to occur rather late and are non-specific. Future developments are likely to include "fusion" or "hybrid" imaging methods. Superimposed data from MR imaging with spectroscopy, PET with CT, and PET with MR should be able to integrate advantages of different modalities yielding comprehensive information about tumor structure, function and microenvironment.