The chronic and immediate post-exercise responses in the hemostatic and fibrinolytic systems have been shown to be variable and reflect differing adaptations with ageing and responses to exercise protocols. This study investigated the effects of acute and exhaustive exercise on the amplitude and duration of hemostatic and fibrinolytic responses in young adolescent males. The sample comprised 10 sedentary boys (13.2+/-0.5 years, 55.8+/-11.3kg, 165.7+/-7.4cm), who had not exercised or received any medication for at least 2 weeks before the experiments. The subjects performed exhaustive stepping exercise, consisting of 1s up and down cycles to fatigue. When the subjects were unable to maintain the required stepping rhythm, they were given a 30s recovery period. Following each 30s recovery participants recommenced the stepping cadence until fatigue prevented them continuing. Venous blood samples were drawn before and immediately, 1 and 24h after exercise to assess the following coagulation and fibrinolytic parameters: Platelet counts, activated partial thromboplastin time (aPTT), prothrombin time (PT), coagulation factor VIII (FVIII:C), von Willebrand factor (vWF), fibrinogen concentration, thrombin-antithrombin complex (TAT), D-dimer, plasminogen activator inhibitor (PAI-1), and tissue-type plasminogen activator (t-PA). Immediately following exercise, platelet counts, aPTT, FVIII, vWF and t-PA were significantly elevated in contrast to PAI-1, which decreased significantly until 1h after exercise. FVIII and platelet counts were elevated at 1 and 24h after exercise, respectively. Only the parameters FVIII and PAI-1 did not return to baseline values during the first hour after physical exercise. When compared to adults the results revealed different rates and ranges of coagulation and fibrinolysis parameters being activated by exhaustive exercise in this group of adolescents.