1. Three experiments were conducted in the Behavioral Pattern Monitor (BPM) to assess the effects of the D1 agonist SKF-38393, the D2 agonist quinpirole, and the interaction of the D2 antagonists haloperidol with amphetamine or cocaine on the amount, the structure, and the unpredictability of micro-events of rat exploratory behavior. 2. SKF-38393 (0.3, 1.0, 3.0, and 10.0 mg/kg) did not change the amount of motor behavior indicated by the temporal scaling exponent alpha, a descriptor of the local degree of acting, during a 60 min exposure in the BPM. However, SKF-38393 (3.0, and 10.0 mg/kg) significantly increased the spatial scaling exponent d, indicating an increased component of local circumscribed movements. 3. Quinpirole (0.03, 0.1, 0.3, and 1.0 mg/kg) produced a biphasic dose response with respect to the amount of motor behavior. Low doses (0.03, 0.1) significantly decreased the local degree of acting, whereas alpha returned to control group levels for higher doses (0.3, 1.0 mg/kg). The change in activity was accompanied by a significant increase of local movements, i.e. d was increased for the lower doses. 4. Haloperidol (15.0 micrograms/kg) reduced a slightly increased d measure for amphetamine (1.0 mg/kg) treated animals and increased a significantly reduced d for cocaine (20.0 mg/kg) treated animals, without affecting the increases of motor activity induced by both treatments. 5. It is concluded that the structure of motor activity provides an important measure of unconditioned motor behavior, which can be affected independently of the typically measured amount of motor activity.