Akt1 activation can augment hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of rapamycin-independent pathway

Mol Cancer Res. 2006 Jul;4(7):471-9. doi: 10.1158/1541-7786.MCR-05-0234.

Abstract

The phosphoinositide 3-kinase (PI3K)/Akt pathway is commonly activated in cancer; therefore, we investigated its role in hypoxia-inducible factor-1alpha (HIF-1alpha) regulation. Inhibition of PI3K in U87MG glioblastoma cells, which have activated PI3K/Akt activity secondary to phosphatase and tensin homologue deleted on chromosome 10 (PTEN) mutation, with LY294002 blunted the induction of HIF-1alpha protein and its targets vascular endothelial growth factor and glut1 mRNA in response to hypoxia. Introduction of wild-type PTEN into these cells also blunted HIF-1alpha induction in response to hypoxia and decreased HIF-1alpha accumulation in the presence of the proteasomal inhibitor MG132. Akt small interfering RNA (siRNA) also decreased HIF-1alpha induction under hypoxia and its accumulation in normoxia in the presence of dimethyloxallyl glycine, a prolyl hydroxylase inhibitor that prevents HIF-1alpha degradation. Metabolic labeling studies showed that Akt siRNA decreased HIF-1alpha translation in normoxia in the presence of dimethyloxallyl glycine and in hypoxia. Inhibition of mammalian target of rapamycin (mTOR) with rapamycin (10-100 nmol/L) had no significant effect on HIF-1alpha induction in a variety of cell lines, a finding that was confirmed using mTOR siRNA. Furthermore, neither mTOR siRNA nor rapamycin decreased HIF-1alpha translation as determined by metabolic labeling studies. Therefore, our results indicate that Akt can augment HIF-1alpha expression by increasing its translation under both normoxic and hypoxic conditions; however, the pathway we are investigating seems to be rapamycin insensitive and mTOR independent. These observations, which were made on cells grown in standard tissue culture medium (10% serum), were confirmed in PC3 prostate carcinoma cells. We did find that rapamycin could decrease HIF-1alpha expression when cells were cultured in low serum, but this seems to represent a different pathway.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Line, Tumor
  • Chromones / pharmacology
  • Enzyme Activation
  • Enzyme Inhibitors / pharmacology
  • Glioblastoma / enzymology
  • Glioblastoma / genetics
  • Glioblastoma / metabolism
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / biosynthesis*
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Male
  • Morpholines / pharmacology
  • PTEN Phosphohydrolase / genetics
  • PTEN Phosphohydrolase / metabolism
  • Phosphatidylinositol 3-Kinases / metabolism
  • Phosphoinositide-3 Kinase Inhibitors
  • Protein Biosynthesis / drug effects
  • Protein Kinases / metabolism*
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors
  • Proto-Oncogene Proteins c-akt / metabolism*
  • RNA, Small Interfering / genetics
  • TOR Serine-Threonine Kinases
  • Transfection
  • Vascular Endothelial Growth Factor A / immunology
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Chromones
  • Enzyme Inhibitors
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Morpholines
  • Phosphoinositide-3 Kinase Inhibitors
  • RNA, Small Interfering
  • Vascular Endothelial Growth Factor A
  • 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
  • Protein Kinases
  • MTOR protein, human
  • AKT1 protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • PTEN Phosphohydrolase
  • PTEN protein, human