Background: Atherosclerosis is considered to be a chronic inflammatory disorder. Activation of the complement cascade is a major aspect of chronic inflammatory diseases. Complement components were identified in atherosclerotic plaques, and a correlation between adverse events and C5a plasma levels was found. These findings support the notion that complement activation contributes to development and progression of atherosclerotic lesions.
Objectives: We investigated whether complement components C3a and C5a regulate plasminogen activator inhibitor (PAI-1) in human macrophages.
Methods: Human monocyte-derived macrophages (MDM) and human plaque macrophages were cultured and incubated with the complement component C5a.
Results: C5a increased PAI-1 up to 11-fold in human MDM and up to 2.7-fold in human plaque macrophages. These results were confirmed at the mRNA level using real time-polymerase chain reaction. Pertussis toxin or anti-C5aR/CD88 antibody completely abolished the effect of recombinant human C5a on PAI-1 production, suggesting a role of the C5a receptor. Experiments with antitumor necrosis factor (TNF)-alpha antibodies and tiron showed that the effect of C5a was not mediated by TNF-alpha or oxidative burst. Furthermore C5a induced NF-kappaB binding to the cis element in human macrophages and the C5a-induced increase in PAI-1 was completely abolished by an NF-kappaB inhibitor.
Conclusions: We conclude that C5a upregulates PAI-1 in macrophages via NF-kappaB activation. We hypothesize that - if operative in vivo- this effect could favor thrombus development and thrombus stabilization in the lesion area. On the other hand one could speculate that C5a-induced upregulation of PAI-1 in plaque macrophages could act as a defense mechanism against plaque destabilization and rupture.