Objectives: To evaluate synthetic small interference RNA (siRNA) compounds targeting heat-shock protein 27 (Hsp27) as an alternative approach to Hsp27 'knockdown' in prostate cancer cells, as Hsp27 expression is highly up-regulated in prostate cancer cells after androgen withdrawal or chemotherapy, to become uniformly highly expressed in androgen-independent (AI) prostate cancer.
Materials and methods: We recently showed that targeting Hsp27 by a 2'-methoxyethyl modified phosphorothioate antisense oligonucleotide, OGX-427, inhibits Hsp27 expression and enhances hormone- and chemotherapy in prostate cancer xenograft models. In the present study, a 'gene walk' screening different siRNAs was initially used in PC-3 and LNCaP cells to determine the most potent sequence to down-regulate Hsp27 mRNA and protein levels. The effects of Hsp27 silencing on in vitro growth rates were studied by tetrazolium-blue and crystal violet assays. Apoptosis was determined by single-stranded DNA nuclear and cleaved caspase-3 immunostaining, as well as flow cytometry. Spotted microarrays with 14,000 human oligonucleotides were used to examine changes in gene expression.
Results: Low concentrations of 1 nm siRNA decreased Hsp27 mRNA levels by 19-fold and suppressed protein expression to undetectable levels. Silencing of Hsp27 in prostate cancer cells by siRNA # 2 increased apoptotic rates 2.4-4 fold and caused 40-76% inhibition of cell growth in LNCaP and PC-3 cells. Characteristic cleavage of caspase-3 occurred after treatment with Hsp27 siRNA (1 nm). cDNA microarray analysis from LNCaP and PC-3 cell lines revealed differential gene expression profiles after Hsp27 down-regulation that could be used to identify various survival pathways involved in androgen-dependent and AI growth.
Conclusions: These findings illustrate the potential utility of Hsp27-silencing therapy and highlight Hsp27 siRNA strategies as a novel and highly effective tool, with the potential for future targeted therapy in enhancing the efficacy of chemotherapy in advanced prostate cancer.