In order to get a deeper understanding of the relationship between nucleolus structure and its function, the dynamic change and derivation of FC (fibrillar center) and DFC (dense fibrillar component) through interphase were investigated in HeLa cells synchronized at the ultrastructural level. The results showed that there was a process of FC and DFC derivation in the nucleolus of HeLa cells during interphase. In G1 phase there were a few big FCs in the nucleolus of the HeLa cell. In S phase DFC around the FC got thickened and the configuration of the DFC changed. A lot of tiny FCs were derived from parts of the thickened DFC. We called the FC and DFC formed in G1 phase as primary FC (pri-FC) and primary DFC (pri-DFC) and the FC and DFC derived from the thickened pri-DFC as secondary FC (sec-FC) and secondary DFC (sec-DFC). In G2 phase sec-FC and sec-DFC were gradually separated from pri-DFC and scattered evenly in the nucleolus. Few large pri-FCs coexisted with numerous tiny sec-FCs in the nucleolus of HeLa cells in G2 phase. Based on the results of our observation, we suggest here a model of the dynamic change and the process of derivation of FC and DFC through interphase.