Usually, SrTiO3 monodoped with Cr cations at the Ti4+ site hardly shows visible light photocatalytic activity. Revealing the origin of this issue is important for us to find an alternative approach to make SrTiO3 active under visible light irradiation. In this paper, two Cr-doped SrTiO3-(Sr0.95Cr0.05)TiO3 and Sr(Ti0.95Cr0.05)O3-were synthesized by a conventional solid-state reaction method, and their photophysical and photocatalytic properties were studied comparatively. It was found that both (Sr0.95Cr0.05)TiO3 and Sr(Ti0.95Cr0.05)O3 showed considerable absorption to visible light. However, their photocatalytic activities for H2 evolution from aqueous methanol solution under visible light irradiation were significantly different: the H2 evolution rate over (Sr0.95Cr0.05)TiO3 (approximately 21 micromol/h) was more than 100 times that over Sr(Ti0.95Cr0.05)O3 (approximately 0.2 micromol/h). X-ray photoelectron spectroscopy analysis results revealed that the Cr cations doped at the Sr2+ site were all trivalent state (Cr3+), while those doped at the Ti4+ site were mixed valent states (Cr3+ and Cr6+). The different photocatalytic activities of H2 evolution are supposed to closely relate to the different valent states of Cr doped at different sites (Sr2+ or Ti4+) in SrTiO3. Possible electronic structures of (Sr0.95Cr0.05)TiO3 and Sr(Ti0.95Cr0.05)O3 were proposed in relation to their photophysical and photocatalytic properties.