Cell-surface receptor tyrosine kinases play pivotal roles in development, tissue repair, and normal cellular homeostasis. Aberrant expression or signaling patterns of these kinases has also been linked to the progression of a diversity of diseases, including cancer, atherosclerosis, asthma, and fibrosis. Two major families of receptor tyrosine kinases, the epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR) families, have received a great deal of attention as potential therapeutic targets for pulmonary diseases, as these receptors have been shown to play key roles in chronic tissue remodeling in asthma, bronchitis, and pulmonary fibrosis. The EGFR system on epithelial cells and underlying mesenchymal cells (fibroblasts, myofibroblasts, and smooth muscle cells) drives numerous phenotypic changes during the progression of these pulmonary diseases, including epithelial cell mucous cell metaplasia and mesenchymal cell hyperplasia, differentiation, and extracellular matrix production. The PDGFR system, located primarily on mesenchymal cells, transduces signals for cell survival, growth and chemotaxis. The variety of EGFR and PDGFR ligands produced by the airway epithelium or adjacent mesenchymal cells allows for intimate epithelial-mesenchymal cell communication. A full understanding of the complex mechanisms involving these receptors and ligands should lead to therapeutic strategies for the treatment of a wide range of fibroproliferative lung diseases.