Is glycine "sweet" to mice? Mouse strain differences in perception of glycine taste

Chem Senses. 2006 Nov;31(9):785-93. doi: 10.1093/chemse/bjl020. Epub 2006 Aug 10.

Abstract

Glycine is an amino acid tasting sweet to humans. In 2-bottle tests, C57BL/6ByJ (B6) mice strongly prefer glycine solutions, whereas 129P3/J (129) mice do not, suggesting that they differ in perception of glycine taste. We examined this question using the conditioned taste aversion (CTA) generalization technique. CTA was achieved by injecting LiCl after drinking glycine, and next its generalization to 10 taste solutions (glycine, sucrose, saccharin, D-tryptophan, L-tryptophan, L-alanine, L-proline, L-glutamine, NaCl, and HCl) was examined by video recording licking behavior. Both B6 and 129 mice generalized the aversion to sucrose, saccharin, L-alanine, and L-proline and did not generalize it to NaCl, HCl, and L-tryptophan. This indicates that both B6 and 129 mice perceive the sweetness (i.e., a sucrose-like taste) of glycine. Thus, the lack of a glycine preference by 129 mice cannot be explained by their inability to perceive its sweetness. Strain differences were observed for CTA generalization to 2 amino acids: 129 mice generalized aversion to L-glutamine but not D-tryptophan, whereas B6 mice generalized it to D-tryptophan but not L-glutamine. 129.B6-Tas1r3 congenic mice with 2 genotypes of the Tas1r3 locus (B6/129 heterozygotes and 129/129 homozygotes) did not differ in aversion generalization, suggesting that the differences between 129 and B6 strains are not attributed to the Tas1r3 allelic variants and that other, yet unknown, genes are involved in taste perception of amino acids.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drinking Behavior / drug effects*
  • Genotype
  • Glycine / pharmacology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred Strains / genetics*
  • Receptors, G-Protein-Coupled / genetics
  • Species Specificity
  • Taste / drug effects*
  • Taste / genetics*

Substances

  • Receptors, G-Protein-Coupled
  • Glycine