Several lines of evidence have suggested that c-fos may act downstream from c-Ha-ras in a growth-regulatory signal transduction pathway. We used antisense RNA to inhibit c-fos gene expression and investigated the effects of diminished c-fos expression on the phenotypes induced by the EJ c-Ha-ras oncogene in NIH 3T3 cells. Immunofluorescent staining demonstrated that the antisense RNA caused a marked reduction in the amount of c-fos protein expressed following serum stimulation. EJ cells containing antisense-fos RNA continued to overexpress ras and remained capable of proliferating in vitro. However, the antisense-fos RNA caused a partial reversion of the major transformed phenotypes of EJ cells, including a restoration of both density-dependent growth arrest and the ability to be rendered quiescent by serum deprivation, a reversion to a flat morphology, inhibition of anchorage-independent growth, and inhibition of tumorigenicity in nude mice. Our results indicate that inhibition of c-fos expression, to a level still supporting in vitro proliferation, prevents the transforming effects of the ras oncogene; they thus provide additional evidence for the participation of c-fos in ras-regulated signal transduction pathways.